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Abstract

Large language models (LLMs) have been extens-
ively studied for their abilities to generate convin-
cing natural language sequences, however their
utility for quantitative information retrieval is less
well understood. In this paper we explore the feas-
ibility of LLMs as a mechanism for quantitative
knowledge retrieval to aid data analysis tasks such
as elicitation of prior distributions for Bayesian
models and imputation of missing data. We present
a prompt engineering framework, treating an LLM
as an interface to a latent space of scientific liter-
ature, comparing responses in different contexts
and domains against more established approaches.
Implications and challenges of using LLMs as ‘ex-
perts’ are discussed.

1 INTRODUCTION

Automated solutions for life sciences, industrial and gov-
ernmental processes demand, in the learning phase, large
amounts of data, but these may be unavailable or incomplete.
Small samples and missing data increase the risk of overfit-
ting, weakening the validity, reliability and generalizability
of statistical insights. Transfer learning and self-supervised
learning have proven effective in addressing the issue of
large scale data annotation in fields such as computer vision
and natural language processing, but are not a panacea.

To overcome limitations of small data, analysts employ two
approaches. Firstly, data-based or empirical methods max-
imize information extraction, through imputation models—
such as mean imputation—and data augmentation. However,
this is limited by the size, availability and representative-
ness of training data. Alternatively, one can exploit prior
information, through application of knowledge graphs or
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expert-elicited Bayesian priors, allowing for sparser mod-
els and handling of missing values. This latter approach is
constrained by the difficulty, cost and myriad different meth-
ods of obtaining and eliciting subjective and heterogeneous
opinions from experts, then translating them into a form
amenable to quantitative analysis (Falconer et al., 2022).

Large language models (LLMs), also known as foundation
models (Narayan et al., 2022), are generative models cap-
able of producing natural language texts based on a given
prompt or context. LLMs such as GPT-4 have been used in
various applications, such as chatbots, summarization and
content creation. In the quantitative sciences, LLMs have
been applied to mostly qualitative tasks such as code com-
pletion, teaching of mathematical concepts (Wardat et al.,
2023) and offering advice on modelling workflows or ex-
plaining data preparation pipelines (Barberio, 2023; Has-
sani and Silva, 2023). Some work has also applied LLMs
to mathematical reasoning and symbolic logic (He-Yueya
et al., 2023; Orrù et al., 2023). When linked with certain
application programming interfaces (APIs), or incorporated
into a retrieval-augmented generation (RAG) tool, some
LLM frameworks (e.g. Ge et al., 2023) are also capable of
evaluating code, connecting to other data analysis tools or
looking up supporting information (Nicholson et al., 2021;
Kamalloo et al., 2023). However, the capabilities of large
language models to retrieve accurate and reliable quantit-
ative information are less well-explored. In this paper, we
explore the possibility of using LLMs including GPT-4 to
tackle the ‘small data’ problem by treating the model as an
(indirect) interface to the large and diverse body of scientific
and technical knowledge contained within its training cor-
pus, and hence using an LLM to generate ‘expert’-guided
estimates for imputing missing values and deriving inform-
ative prior distributions.

Our motivation is the question: can large language models
be treated as experts having read a large sample of the
scientific literature (although the exact training corpus is
not known, so ‘openness’ is debatable; see Liesenfeld et al.,
2023) and thus might be treated as an accessible interface
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to this knowledge (Petroni et al., 2019; Singhal et al., 2023)
pertaining to the task of prior elicitation and imputation.

Contributions of this paper are twofold. Firstly, we present
a prompt engineering framework for zero-shot missing data
imputation, based on LLMs playing ‘expert’ roles derived
from metadata such as the dataset description. This is fol-
lowed by an empirical evaluation of LLM imputation qual-
ity and the impact on downstream tasks, compared with
baseline approaches on a diverse set of 50 real-world data-
sets across different domains. Secondly, we develop a chain-
of-thought-based methodology to elicit prior distributions
from general purpose LLMs, emulating real-world know-
ledge elicitation protocols. LLM-elicited priors are com-
pared with those from human experts, and the quantitative
value of LLM ‘expertise’ is evaluated for several tasks. Code
to reproduce our experiments is available on GitHub.

2 RELATED WORK

2.1 NUMERACY IN LANGUAGE MODELS

Language models have been noted for their remarkable abil-
ity to act as unsupervised knowledge bases (Petroni et al.,
2019). One might expect a language model like GPT-4 to
handle text, code and sequences, but unimbued with access
to external tools, the capabilities with numerical data are
less obvious. Noever and McKee (2023) and Cheng and
Zhang (2023) discuss the ‘emergent’ numeracy skills of
LLMs, from early models unable to perform simple addi-
tion to later versions able to compute correlations. Hopkins
et al. (2023) showed that repeated sampling from LLMs
does not yield reasonable distributions of random numbers,
making them poor data generators. Xiong et al. (2023) also
suggested LLMs tend to underestimate uncertainty. It has
been hypothesized that mode collapse, in models fine-tuned
via reinforcement learning with human feedback, inhibits
the diversity of outputs (Anonymous, 2023).

The design, adaptation and use of LLMs to assist data ana-
lytical tasks is a hotly explored topic—a comprehensive re-
view is beyond the scope of this article. Microsoft Research
AI4Science and Microsoft Azure Quantum (2023) surveyed
LLMs’ use in scientific discovery, finding numerical cal-
culation abilities, without connecting to external tools, left
room for improvement. Most LLM-based data science tools
focus on tasks such as code generation for analysis scripts
(Megahed et al., 2023), visualization (Dibia, 2023; Mad-
digan and Susnjak, 2023) and connection of LLMs with
external APIs (Ge et al., 2023). Similarly, LLMs fine-tuned
on scientific texts may be used to extract qualitative inform-
ation, such as chemical formulae or entity relations (Dunn
et al., 2022). Typically, queries about data imputation to
an LLM-driven chatbot will yield template Python code
for performing mean imputation, or general advice about
the relative merits of imputation techniques. Similarly, a

conversation with ChatGPT about prior elicitation could
generate textual advice about how to elicit priors from ex-
perts. Ahmad et al. (2023) proposed a data cleaning model
that combines a fine-tuned foundation model augmented
with retrieval from a user-supplied data lake. Here, how-
ever, we are interested in evaluating the intrinsic ability of
an LLM to retrieve latent quantitative information directly;
that is, not to perform mathematical operations on an input
dataset nor to offer code or advice on how to do so, rather
to offer educated numerical suggestions based on its large
training corpus containing specialist technical knowledge.

2.2 DATA PROCESSING WITH LLMS

There is some promise in converting data into natural lan-
guage inputs for an LLM to perform preprocessing: Narayan
et al. (2022) tested GPT-3 on entity matching, error detection
and data imputation tasks, in zero-shot and few-shot settings.
Their approach involved serializing tabular data and tasks
into a natural language format using manually tuned prompt
templates. Vos et al. (2022) explored prefix tuning as an
alternative to full fine tuning of an LLM for such tasks;
whereas Zhang et al. (2023b) compared GPT-3.5, GPT-4
and Vicuna-13B in a data preprocessing framework, later
developing Jellyfish-13B, an open-source LLM fine-tuned
specifically for data preprocessing (Zhang et al., 2023a).
Li et al. (2023b)’s Table-GPT describes a framework for
fine-tuning language models on ‘table tasks’, including find-
ing and predicting missing values. Separately, Chen et al.
(2023) utilized fine tuning in tandem with a graph atten-
tion mechanism to impute spatiotemporal data. Nazir et al.
(2023) further explored the capability of ChatGPT in miss-
ing value imputation, focussing on imputation quality (see
subsection 3.2) in psychological and biological data. An
alternative approach to LLM-assisted data analysis involves
using only the model’s encoder to project natural language
representations of a data vector into a latent space, then per-
forming anomaly detection on the resulting numeric latent
vector (Lopatecki et al., 2023a,b).

However, the level of ‘expertise’ offered by pretrained
LLMs on quantitative tasks across different domains has
not yet been extensively studied, nor the effect of LLM
imputations on performance in downstream tasks.

2.3 EXPERT KNOWLEDGE ELICITATION

Prior distributions are just one form of knowledge elicited
from domain experts; others include feature engineering,
model explanations and labelling heuristics, but in each case
the process of elicitation typically involves interviews, writ-
ten correspondence or interaction with a custom computer
app (Kerrigan et al., 2021). A good expert-elicited prior
distribution can help a statistical model effectively represent
the data generating process, although due to various prac-
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tical, technical and societal factors, prior elicitation is not
yet widespread practice. As Mikkola et al. (2023) note, a
lack of standardized software means there is no way for an
analyst building a model, e.g. in Stan or Pyro, to ‘launch an
elicitation interface to elicit for their specific model’.

This lacuna might be filled with improved tools to facilit-
ate interaction with human experts, or even to extract in-
formation automatically from existing knowledge bases,
bypassing human experts altogether. Li et al. (2023a) de-
scribe LM-driven elicitation, using a chatbot or language
model to assist information elicitation from human experts,
making the process interactive. In engineering, LLMs have
been employed in generating (and responding to) require-
ments elicitation surveys (White et al., 2023; Ronanki et al.,
2023; Görer and Aydemir, 2023).

Natural language processing is already extensively used to
extract quantitative information from large academic cor-
pora, with the aim of aiding data-driven scientific research
(see, e.g. Olivetti et al., 2020). In a similar vein, prior distri-
butions may be elicited from academic publications: Linde
et al. (2023) describe the use of a systematic review of the
biomedical literature to perform ‘data-driven’ prior elicita-
tion (see also Rietbergen et al., 2011; van de Schoot et al.,
2018). A meta-analytic-predictive (MAP) prior uses histor-
ical data to reduce the number of subjects needed in clinical
trial design (Weber et al., 2021). To our knowledge, the feas-
ibility of eliciting prior distributions from a ‘domain expert’
in the form of an LLM has not yet been explored.

A significant limitation of treating a ‘black box’ model as a
domain expert is its lack of transparency or accountability.
On the other hand, without the ability to read minds, it is
impossible to know exactly why a human expert gives a
particular answer or why it might differ from other experts
or from the same person’s responses under different circum-
stances. Information retrieved from humans and machines
alike may be sensitive to the way it is elicited. LLMs may,
for example, ‘encode clinical knowledge’ (Singhal et al.,
2023), but whereas one can scrutinize the credentials of
any human expert, the training corpora of closed, propri-
etary models like GPT-4 and GPT-3.5 are not published1

and the provenance of its outputs are not always attributable
(Kamalloo et al., 2023). Retrieval augmented generation
tools (Lewis et al., 2020), such as Microsoft’s Bing Copilot,
perplexity.ai and Scite Assistant (Nicholson et al., 2021),
attempt to provide supporting sources alongside their gener-
ated responses, though factual grounding is not guaranteed
and different prompts can still yield different answers (An-
driopoulos and Pouwelse, 2023).

1Nevertheless, it is possible to reveal a closed LLM’s training
data through adversarial attacks (Nasr et al., 2023).

2.4 ELICITATION FRAMEWORKS

Several elicitation protocols have been developed to mitigate
cognitive biases and combine the judgements of multiple ex-
perts (O’Hagan, 2019). The Sheffield Elicitation Framework
(SHELF; Gosling, 2018) describes a collection of methods
for eliciting a distribution based on aggregated opinions of
multiple experts, through group discussion guided by a fa-
cilitator. As well as training participants in basic probability
and statistics, the protocol includes various ways of elicit-
ing a univariate distribution, such as the ‘roulette method’,
where experts assign (virtual) chips to equally-spaced bins
to form a histogram. Alternatively, the quartile method (or
‘Sheffield method’; European Food Safety Authority, 2014)
uses a series of questions to elicit a reference range, median,
upper and lower quartiles of a distribution. Cooke’s 1991
method pools the distributions of multiple experts, weighted
according to their respective ‘calibration’ (ability to estimate
a distribution whose ground truth is known) and ‘informa-
tion’ (concentration or vagueness of the prior). The Delphi
method uses the quartile method, iteratively refined over
successive survey rounds using anonymized feedback from
other participants. In this paper, however, we consider only
single-agent LLMs with a zero-shot approach.

Perhaps one of the biggest benefits of extracting opinions
from pre-trained models is that the early part of the elicita-
tion process—teaching statistical literacy—can be omitted.
As demonstrated in Appendix A, ChatGPT 3.5 is aware of
the ‘roulette’ method, the SHELF protocol and most para-
metric probability distributions, with minimal exposition
or disambiguation necessary. It remains to investigate the
utility of this pre-training in practical problems.

3 EVALUATING EXPERTISE

3.1 WHAT MAKES A GOOD PRIOR?

Bayesian statistics involves decisionmaking based on a pos-
terior distribution, p(θ|D) ∝ π(θ)

∏n
i=1 p(xi|θ), where

π(θ) denotes the prior distribution. The definition of a ‘good’
prior distribution—like Bayesian statistics itself—is sub-
jective, depending on the analyst’s understanding of the
purpose of expert-elicited information. No standard bench-
mark exists for expert-elicited prior distributions; a prior is
a function of the expert and the elicitation method, as well
as of the predictive task (Gelman et al., 2017). One purpose
of prior information is to reduce amount of data needed.
Another is to treat expert knowledge and observed data
as complementary sources of information about a natural
process.

In practice, any statistical model is at least slightly misspe-
cified, but a prior—be it elicited from human or machine—
can still be informative, realistic and useful. An informat-
ive expert prior is different from a non-informative (e.g.
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Jeffreys’) or default prior, but in this context the term ‘in-
formative’ does not necessarily mean ‘correct’ but rather
concentrated or confident, rather than vague and uninformat-
ive, even (and indeed especially) if it later turns out to be in
conflict with the data observed. Realistic priors—as extrac-
ted from language models—should align with those from
human experts or be otherwise verifiable on external data.
‘Useful’ means superior posterior predictive performance on
a downstream task, improving expected utility relative to ref-
erence priors (and human experts, where available). Mean-
while, an elicitation framework should be robust, coherent,
consistent, flexible and efficient. That is, the distributions
produced should not be too sensitive to slight rewording of
prompts, the expert should not have already seen the data
(otherwise it is not a prior!), we should avoid generating
priors that are mutually incompatible, and the framework
should be readily adaptable to new or larger problems.

A measurement of the informativeness of a prior distri-
bution is the prior effective sample size (Morita et al.,
2008; Neuenschwander et al., 2020). However, this does
not measure improvement on downstream tasks, but rather
how many data points one would need to get similar peaki-
ness/curvature around the posterior mode. Another measure
is the Bayesian log posterior predictive density, or lppd
(McElreath, 2016)—also called log loss—or the continu-
ous ranked probability score (CRPS), a proper scoring rule
used in weather forecasting (Gneiting and Raftery, 2007).
We can estimate both metrics using the posterior predictive
distribution

p(x′|D) = Ep(θ|D)[p(x
′|θ)]

on a hold out data set. See also Wilde et al. (2021) for a
similar setting that quantifies the utility of synthetic data in
Bayesian setting.

Nevertheless, it makes little sense—in measuring an expert’s
domain knowledge—to perform only abstract simulations
comparing with known data generating distributions. Evalu-
ating quantitative information in language models necessit-
ates methods grounded in the real world.

3.2 IMPUTATION EVALUATION

Jäger et al. (2021) describe two principles of benchmarking
imputation methods: imputation quality and downstream
evaluation. Imputation quality—or upstream performance—
measures the extent to which an imputation method can
accurately recover artificially missing values. Downstream
evaluation involves training a supervised learning model
on the imputed dataset and measuring its predictive per-
formance. Imputation quality for continuous features can
be calculated using the root mean square error RMSE =√

1
n

∑n
i=1(xi − x̂i)2 where xi represents the original dis-

carded value and x̂i the output of imputation, whereas for

categorical features, imputation quality can be calculated
via the F1 score, F1 = 2(recall−1 + precision−1)−1, the
harmonic mean of precision and recall. As RMSE is un-
bounded, inter-dataset comparison is made possible by us-
ing a normalised version: NRMSE = RMSE

xmax−xmin
where

xmax and xmin represent the maximum and minimum value
in the original values. Downstream performance can be
measured by improvement = score(imputed)−score(incomplete)

score(incomplete)
where score(imputed) represents the prediction score of
the model trained and tested on the imputed data, and
score(incomplete) represents the prediction score of the
model trained and tested on the incomplete data. This rep-
resents how much downstream performance has improved
compared to training and testing with incomplete data.

4 PROMPTING METHODOLOGY

Impersonating a human domain expert can improve an
LLM’s performance at related tasks (Salewski et al., 2023).
Nevertheless, in response to scientific questions, especially
on potentially sensitive topics, such as healthcare advice,
language models often prevaricate. A quantitative know-
ledge retrieval system should therefore prompt the LLM to
play the role of an expert and carefully specify the task at
hand to ensure contextually relevant information is returned
in the appropriate format. In this section, we present a frame-
work for eliciting ‘expert’ advice in the form of imputed
values and prior distributions from an LLM.

Algorithm 1 Data imputation

Input: Dataset, dataset description, prompt templates
epi← EPI(dataset description, epi prompt templates)
for all row← dataset do

if row contains missing values then
for all missing value← row do

ds← Data serialization(row)
system prompt← epi + system suffix
elicited value ←
TS(system prompt, ds, prompt templates)

end for
end if

end for
Output: Imputed data

Algorithm 2 Expert prompt initialization (EPI)

Input: Data description, prompt templates
user prompt← prefix + data description + suffix
epi prompt← LLM(system prompt, user prompt)
return epi prompt

Output: System prompt describing expert role

Expert roles To optimally prime the LLM for contextu-
ally accurate missing value imputation and prior elicitation,
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Algorithm 3 Data serialization (DS) for data imputation

Input: Target row
for all variable name, value← target row do

if value is missing then
ds← ds + “The {variable name} is <missing>.”

else
ds← ds + “The {variable name} is {value}.”

end if
end for

Algorithm 4 Task specification (TS)

Input: system prompt, ds, ts prompt templates
user prompt← prefix + ds + suffix
elicited value← LLM(system prompt, user prompt)
return elicited value

it is important to establish an initialization context emulat-
ing the expertise of a human specialist. This necessitates
creation of a detailed system prompt defining expert roles
for each specific dataset. For efficiency and scalability, we
used the generative capabilities of the LLM itself to write
the initial system prompts. We develop a template prompt
including the respective dataset description to generate a
system prompt as ‘role description’ for an expert who will
perform the imputations. This step is executed only once
per dataset. The expert prompt initialization (EPI) module
(Algorithm 2) introduces the task with the words “I am go-
ing to give you a description of a dataset. Please read it and
then tell me which hypothetical persona would be the best
domain expert...” This introduction is followed by inform-
ation derived from existing metadata, including a dataset
description and a list of column names. The LLM then re-
turns a short biography of the form “You are a...” describing
the role to be played in future queries. This is then used as
the system prompt. Further details are given in Appendix B.

Data serialization While some papers (e.g. Zhang et al.,
2023a; Li et al., 2023b) give the data to the LLM in a tabular
format, we input the data to the LLM in a natural language
form to let the LLM to behave as a human domain expert.
The data serialization (DS) module (Algorithm 3) converts
the data into a natural language form. See Appendix C.

Task specification Querying the LLM about missing
value imputation or prior elicitation will typically yield
generic advice, suggest R or Python analysis code or refer
the user to consult a real expert. The user prompt must insist
that the agent returns numeric information, preferably in a
consistent format so that large numbers of such responses
can be parsed programmatically. The task specification (TS)
module (Algorithm 4) asks the LLM with clear task instruc-
tions and returns the elicited value. See Appendix D for
further details.

Temperature In pursuit of reproducibility and to avoid
redundant computation through stochastic sampling, our
framework assumes a temperature setting of zero. An LLM
data imputer does not necessarily require linguistic capabil-
ities of more general purpose language model applications
associated with a temperature setting greater than zero (ex-
cept, perhaps, in expert prompt initialization). The primary
objective is the precise and contextually appropriate filling
of data gaps, rather than the generation of diverse or creative
text. It is a widely held belief that lower temperature set-
tings produce more deterministic results, although Ouyang
et al. (2023) demonstrated that this is not always the case.
Nonetheless, it is beyond the scope of the present study to
explore the impact that different temperature parameters
have on the quality of data imputation or elicited knowledge.
This may be investigated in future work.

5 EXPERIMENTS

An empirical evaluation of an LLM’s ‘real world’ know-
ledge necessarily precludes purely abstract simulation-based
studies. This motivates selection of series of datasets based
on—ideally—careful representative sampling of real world
measurements. Like any human expert, the model can be
assumed to know more about some topics than others, which
we attempt to explore through evaluation on a broad range
of domain areas including medicine, biology, economics,
engineering, social sciences, and psychology.

5.1 DATA IMPUTATION

5.1.1 Datasets

The OpenML-CC18 Curated Classification benchmark (Bis-
chl et al., 2017) comprises 72 classification datasets from
OpenML, based on real-world binary or multi-class classi-
fication tasks, in a variety of domains from credit scoring
to biology, medicine and marketing. Use of this collection
ensures our experiments cover a wider set of domains than
previous work on LLM data imputation; meanwhile a pre-
specified benchmark mitigates the risk of ‘cherry picking’.

Datasets in CC18 have sample sizes (n) from about 500
to tens of thousands, with numbers of features (p) ranging
from 5 to 3073. Though all ostensibly provided in dense
tabular format, some are actually drawn from other modes;
for example, the MNIST and CIFAR-10 imaging datasets
are represented as wide tables, with columns corresponding
to individual pixels. It is fair to assume that any human-like
expert is unlikely to make particularly informed imputations
about such features.

To evaluate the imputation quality, we used all datasets that
have no missing values, which is 64 datasets. We then split
the datasets into training and test sets, with 80% of the

5



samples in the training set and the remaining 20% in the test
set. For each dataset, we artificially generated missing values
based on the missing at random (MAR) missingness pattern,
where the probability of a value being missing depends only
on the observed values. The number of features including
missing values was set to min(#all features, 3), and the
number of samples with missing values was set to 40 for the
training set and 10 for the test set. This implementation was
based on the Jenga library by Schelter et al. (2021).

5.1.2 Imputation methods

Building on Jäger et al. (2021) and Nazir et al. (2023), our
LLM data imputer is compared with 3 empirical approaches:
mean and mode imputation (for continuous and categorical
features, respectively), k-nearest neighbours (k-NN) imputa-
tion (the mean/mode of the k nearest samples) and random
forest imputation. See Appendix E for further details. The
LLM-based data imputer was powered by LLaMA 2 13B
Chat, LLaMA 2 70B Chat (Touvron et al., 2023), Mistral
7B Instruct (Jiang et al., 2023) and Mixtral 8x7B Instruct
(Jiang et al., 2024), each evaluated separately.

5.1.3 Evaluation

We imputed the missing values in the training and test sets
using the LLM data imputer and the baseline methods. We
then calculated the imputation quality for each feature using
the NRMSE and F1 score for continuous and categorical
features, respectively. For NRMSE, we dropped the result
when the denominator was zero.

We trained a random forest classifier on the training set and
evaluated its performance on the test set. For the classifier,
we used RandomForestClassifier from scikit-learn version
1.3.2 with hyperparameters set to their defaults. We then
evaluated the downstream performance based on the metrics
described in subsection 3.2.

5.1.4 Results

We evaluated the imputation quality of the LLM data im-
puter and the baseline methods. Figure 1 shows the imputa-
tion quality for continuous and categorical features. The
domain for each dataset was decided manually since it was
not given in the original dataset. See Appendix F for de-
tails. According to the figure, contrary to expectations, the
overall imputation quality of the LLM data imputer was
not as good as the 3 empirical methods. However, it was
suggested that LLM-based imputation can be utilized for
several datasets. For example, some datasets in the engineer-
ing and computer vision domain, such as ‘pc1’, ‘pc3’ and
‘satimage’ dataset, had the quality of around NRMSE = 0.1,
and some datasets in the biology and NLP domain, such
as ‘Internet-Advertisements’ and ‘dna’, had the quality of
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Figure 1: Imputation quality of different models on continu-
ous and categorical features, plotted by domain category.
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Figure 2: Downstream performance of different models,
plotted by domain category.

around F1 = 0.7 − 1.0. On the other hand, the quality of
the LLM-based imputer was poor in the economics and
business domain, such as ‘credit-g’ and ‘bank-marketing’
dataset, with the imputation quality of around F1 = 0.2.

Figure 2 shows that some domains have good downstream
performance with LLM-based imputation, while others do
not. For example, social sciences and psychology have poor
downstream performance, while medicine, economics, busi-
ness and biology have good downstream performance. In
particular, the LLM-based imputer achieved the best per-
formance in the economics domain.

5.2 PRIOR ELICITATION

5.2.1 Datasets

Human experts Stefan et al. (2022) interviewed six psy-
chology researchers about typical small-to-medium effect
sizes (Cohen’s δ with Student’s t-distribution) and Pearson
correlations (|ρ| with a beta distribution) in their respect-
ive specialisms, using the histogram method. Using similar
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question wording, we elicited prior distributions from LLMs
prompted to simulate a single expert, a conference of experts
or a non-expert, with and without reference to the SHELF
elicitation protocol.

Meteorology Priors were elicited from LLMs for the typ-
ical daily temperature and precipitation in 25 small and
large cities around the world during the month of December.
These distributions were then compared with actual histor-
ical weather data as downloaded via the openmeteo API.
By investigating different continents and varying sizes of
settlements, the goal was to identify any systematic biases
that might emerge from LLMs’ respective training corpora.
For instance, one might expect some models to be US or
Euro-centric, or to be better informed about large, famous
cities than smaller, less well-known towns. It is also inter-
esting to compare the behaviour of an LLM with skewed
and symmetrical probability distributions.

Expert confidence We prompted ChatGPT 3.5 to formu-
late 25 tasks that might call for expert elicitation in the
fields of healthcare, economics, technology, environmental
science, marketing and education. Tasks correspond to pro-
portions or probabilities following a beta distribution These
scenarios were then used to gauge general levels of confid-
ence of elicited distributions from different LLMs, using the
prior effective sample size metric, α+ β.

5.2.2 Evaluation

The first experiment acts as a qualitative comparison of
how LLMs behave when emulating a published example of
a prior elicitation exercise with published question word-
ing and results. Densities of human and machine-elicited
distributions are visualized together in Figure 3.

The heuristic prior effective sample size for a Beta(α, β)
distribution is ESS = α + β (Morita et al., 2008). This
illustrates how concentrated prior is and how much real
data might be needed to shift the posterior in case of the
prior being mis-specified. Notions of this also generalize
beyond the conjugate setting, see subsection 3.1. However,
this ‘effective sample size’ is not data-dependent.

In the following we try to illustrate how many samples the
LLM prior offers for someone who has not yet collected
any data. To this end, we compare the prior predictive to
probabilistic supervised learning in the same statistical fam-
ily (Gressmann et al., 2019). We answer the question: how
many samples on average would a frequentist model need
to achieve the same or better log-loss, CRPS or MSE than
the prior predictive distribution? We split the data in half
for testing and repeatedly sample up to 1

3 for training out
of the remaining half. An alternative comparison would be
with a posterior predictive based on training data and some
baseline prior, however choosing such a baseline prior is

Figure 3: Priors for Cohen’s δ (top) and Pearson correlations
(bottom) elicited from LLM and human experts in psycho-
logy. Dashed lines denote a SHELF-like elicitation protocol

difficult. Unlike the (α+ β) effective sample size heuristic,
this data-dependent approach quantifies prior–data conflict.

5.2.3 Results

Figure 3 compares the priors elicited by Stefan et al. from
human experts with those we elicited from LLM counter-
parts in the fields of social and developmental psychology
and cognitive neuroscience. Roleplaying as experts in differ-
ent sub-fields did not have a noticeable effect on the priors.
LLM priors for Cohen’s δ were mostly centred around small
effect sizes of 0.2–0.25, except GPT-4, which offered distri-
butions around δ = 0.5. Mistral-7B-Instruct invariably gave
t distributions with ν = 30 (Llama-70B-Chat-Q5: ν = 5);
other models appeared to grow more conservative (smaller
ν; more leptokurtic distributions) if asked to roleplay as an
expert, simulate a decision conference or employ the SHELF
protocol. Pearson correlation beta priors from LLMs ap-
parently had little in common with those from real experts:
GPT-4 provides a symmetric unimodal distribution whereas
other models offer a right-skewed ‘bathtub’ distribution.

Figure 5 shows α + β for beta-distributed priors. Llama-
based models appear to give more conservative priors,
whereas GPT is consistently more informative. Mistral
7B Instruct occasionally offered extremely high values
α ≥ 1000. There was no clear difference between domains.

In our meteorological task, Figure 4 shows data-dependent
effective sample size of the prior predictive distribution
elicited from LLMs, using the approach described above.
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Figure 4: Benefit of LLM priors for weather forecasting:
number of observations needed for a frequentist model to
achieve better MSE than the prior predictive distribution

Further results are given in the supplementary materials.

6 DISCUSSION & CONCLUSION

Judging the utility of prior knowledge (for small data)
In practice, the value of prior knowledge depends on the
application. Ideally analysts are connected to the real world
and therefore actionable. Given a utility function U(θ, a) for
an action a and θ parameter for a statistical model the Bayes
action is defined as an action maximizing posterior expected
utility Ep(θ|D)[U(θ, a)]. A principled way to measure the

Figure 5: Distribution of prior effective sample size (α+ β)
for beta priors on various tasks. Outliers are omitted.

procedure to generate priors is thus benchmark the change in
utility across a representative class of decision problems, all
calibrated to the same scale. Unfortunately, such a collection
of decision problems is not readily available in the literature.

A natural extension is to (Bayesian) experimental design,
(see Ryan et al., 2016), which illustrates the potential value
of procedures that can lead to good priors. Consider the
example of a consultant contracted under a fixed budget,
1100C, to obtain an estimate with a pre-specified level of
precision, σ. If an ‘uninformed’ approach yielded such a
result with n samples at a cost of 1000C, but prior know-
ledge allowed the same level of precision with n/2 samples
costing 500C, the expected increase in utility (profit) for the
contractor is 500% (or a ROI of 120% compared to 10%).

Limitations and extensions Earlier work (Nazir et al.,
2023; Salewski et al., 2023) showed ChatGPT is capable
of imputation in specific domains. However, as described
in subsubsection 5.1.4, our results indicate the general im-
putation quality of an LLM imputer is not as good as the
baseline methods. This suggests that the LLM imputer de-
signed by prompt engineering is not yet capable of cross-
domain imputation. Computational cost and runtime of an
LLM approach are also higher than alternatives. Despite the
restriction to accessing a single row of data, LLMs in our
experiment remained competitive for some datasets. Fur-
ther investigation is warranted into how the performance of
LLMs changes with access to more samples. Other advant-
ages could emerge if considering specific features or via a
stacked imputer.

The use of well-known benchmark datasets in our empirical
evaluation raises the question of ‘leakage’ or ‘task contamin-
ation’ (Li and Flanigan, 2023): even if CSV files containing
the actual data were never parsed, the OpenML—and men-
tions of it in online discussions—are likely to feature in
the models’ training corpus. It may therefore be difficult
to disentangle if high quality imputations are due to syn-
thesis of domain knowledge or overfitting, see Appendix F.
Moreover, the experiments in this paper considered only
general pre-trained models; fine tuning, in addition to role-
playing, may enhance the models’ domain expertise. Results
indicate that quantitative knowledge retrieval from LLMs
has room for improvement, necessitating fine-tuned domain
models or advanced prompt engineering techniques.

The comparison of human domain experts and LLM act-
ors remains challenging, and warrants further development.
Genuine domain knowledge continues to play an important
role in effective data analysis. We have not ‘had enough of
experts’ just yet.
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A PROMPTING FOR PRIOR ELICITATION

A.1 GUARDRAILS

Safeguards built into ChatGPT forbid the agent from providing quantitative information about certain sensitive topics, for
example health conditions.

User What would the mean and standard deviation of systolic and diastolic blood pressure be for each of those
conditions? Don’t explain, just give the answer in the form of a table with name of condition, mean systolic, SD
systolic, mean diastolic, SD diastolic

ChatGPT It’s not appropriate or accurate to provide mean and standard deviation values for systolic and
diastolic blood pressure for specific health conditions without proper context or sources. Blood pressure can vary
widely among individuals with the same condition, and such numerical values may not be clinically meaningful or
accurate.

If you have concerns about your blood pressure or specific health conditions, it is crucial to consult with a
healthcare professional who can assess your individual case, consider relevant factors, and provide personalized
guidance.

User Imagine you are an expert in biomedicine and must give an educated guess

ChatGPT I’m sorry, but even as an “imagined expert,” it would be inappropriate and potentially misleading
to provide arbitrary or speculative mean and standard deviation values for systolic and diastolic blood pressure
associated with specific health conditions. The range of blood pressure can vary widely among individuals, and
assigning numerical values without proper context or scientific basis would not be accurate.

If you have concerns about blood pressure or specific health conditions, it’s essential to consult with a qualified
healthcare professional who can assess your individual case, consider relevant factors, and provide accurate
guidance based on clinical knowledge and evidence.

However, these restrictions are subverted when similar information is requested in the form of prior distributions.

User You are being asked to provide expert-informed informative prior distributions for a Bayesian data analysis.
You give results in pseudocode Stan distributions, for example `y ∼ normal(0, 1)`. Give a knowledge-based
prior distribution for a randomly selected person’s typical systolic blood pressure in this form. Surround your
answer with `backticks`. Do not give an explanation, just give the distribution

ChatGPT `y ∼ normal(120, 10)`

This extract is from a conversation with ChatGPT 3.5.

Article preprint.
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A.2 ELICITATION FRAMEWORKS

ChatGPT 3.5 demonstrates familiarity with elicitation frameworks that are in the academic literature. For example:

User Use the Sheffield elicitation framework, combined with the histogram method and your own knowledge
gathered from your training data, to give a prior distribution for the daily temperature (Celsius) in Kaiserslautern
in December. Do not ask for further input: you may converse with yourself or simulate a discussion among experts.
Explain how you use the histogram method in the process. Give your final answer as a parametric probability
distribution.

ChatGPT To start, let’s consider the Sheffield elicitation framework. This approach involves gathering expert
opinions to construct probability distributions. Since we’re focusing on daily temperatures in Kaiserslautern in
December, we’ll need to consult meteorologists or climatologists familiar with the region’s climate patterns.

Based on my training data, I know that December temperatures in Kaiserslautern typically range from around
–2°C to 7°C. This information aligns with general climate data for the area. Now, let’s simulate a conversation
with an expert to refine this knowledge.

Expert: “In Kaiserslautern, December temperatures tend to vary quite a bit. We often see colder temperatures early
in the month, with occasional dips below freezing, while later in the month, it tends to hover around 5–7°C.”

Me: “That’s interesting. Would you say there are any extreme temperature outliers we should consider?”

Expert: “While rare, we’ve recorded instances of temperatures dropping as low as –10°C or rising as high as 12°C
in December, though these extremes are not common.”

Now, armed with this expert input and my own data, we can construct a prior distribution using the histogram
method. This method involves dividing the range of temperatures into intervals and assigning probabilities based
on the frequency of occurrence within each interval.

Let’s divide the temperature range into intervals of 2 degrees Celsius each:

• Interval 1: -10°C to -8°C
• Interval 2: -8°C to -6°C
• Interval 3: -6°C to -4°C
• Interval 4: -4°C to -2°C
• Interval 5: -2°C to 0°C
• Interval 6: 0°C to 2°C
• Interval 7: 2°C to 4°C
• Interval 8: 4°C to 6°C
• Interval 9: 6°C to 8°C
• Interval 10: 8°C to 10°C

. . . (Continues)

The full transcript of this conversation with ChatGPT 3.5 is available online.

B EXPERT PROMPT INITIALIZATION

The template of our expert prompt initialization (EPI) module has the following format. {description} is replaced with the
description of the dataset.

System I am going to give you a description of a dataset. Please read it and then tell me which hypothetical
persona would be the best domain expert on the content of the data set if I had questions about specific variables,
attributes or properties.

I don’t need a data scientist or machine learning expert, and I don’t have questions about the analysis of the data
but about specific attributes and values.
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Please do not give me a list. Just give me a detailed description of a (single) person who really knows a lot about
the field in which the dataset was generated.

Do not use your knowledge about the author of the data record as a guide. Do not mention the dataset or anything
about it. Do not explain what you do. Just give the description and be concise. No Intro like ’An expert would be’.

User Here is the description of the dataset:

{description}

Remember: Do not mention the dataset in your description. Don’t explain what you do. Just give me a concise
description of a hypthetical person, that would be an expert on this.

Formulate this as an instruction like “You are an ...”.

For prior elicitation and other applications, the phrase ‘dataset’ may be replaced with ‘task’ or ‘topic’.

As a control, we alternate with a ‘non-expert’ prompt of the form:

You are an individual with no academic or professional background related to the dataset’s field. Your interests
and expertise lie completely outside of the dataset’s domain, such as a chef specializing in Italian cuisine when the
dataset is about astrophysics. You lack familiarity with the technical jargon, concepts, and methodologies pertinent
to the dataset. Your approach to questions about specific variables, attributes, or properties is based on general
knowledge or common sense, without any specialized understanding of the dataset’s context or significance. You
are more inclined to provide answers based on personal opinions or unrelated experiences rather than data-driven
insights.

C DATA SERIALIZATION

In line with earlier work (Narayan et al., 2022; Vos et al., 2022; Nazir et al., 2023) we convert numerical data to a natural
language representation using a simple template structure ‘the {variable} is {value}’: for example a row-vector
of data (37,M, 120) with column names ‘Age’, ‘Sex’ and ‘Blood Pressure’ would become the sentence ‘The Age is
37. The Sex is M. The Blood Pressure is 120’. Though one might be tempted to add units or expand
abbreviations, this conversion is necessarily deterministic to avoid data corruption. Missing values that are not to be imputed
are simply omitted from the prompt.

D TASK SPECIFICATION

We used the following prompt template for task specification in data imputation. {expert prompt} is replaced with the output
of the EPI module, and {data} is replaced with the serialized data.

System {expert prompt}

###

User THE PROBLEM: We would like to analyze a data set, but unfortunately this data set has some missing
values.

###

YOUR TASK: Please use your years of experience and the knowledge you have acquired in the course of your
work to provide an estimate of what value the missing value (marked as <missing>) in the following row of the
dataset would most likely have.

{data}

IMPORTANT: Please do not provide any explanation or clarification. Only provide single value in a JSON format.
RESPONSE FORMAT: {“output”: value}
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E DATA IMPUTATION IMPLEMENTATION DETAILS

To estimate the imputed values in k-nearest neighbours imputation, we used KNNImputer and KNeighborsClassifier from
scikit-learn version 1.3.2. For random forest imputation, we used a Python implementation1 of MissForest (Stekhoven and
Bühlmann, 2012), and RandomForestRegressor and RandomForestClassifier from scikit-learn version 1.3.2.

F OPENML-CC18

A list of OpenML-CC18 datasets used in the experiment is given in Table 1. The domains were selected from medicine,
biology, economics, engineering, social sciences, business, psychology, physics and chemistry, computer vision, and
environment, natural language processing, board game and computer science.

It is difficult to quantify how much knowledge about the specific data set LLMs have about the content of the data as opposed
to the domain, see https://chat.openai.com/share/5349b76b-fca8-420a-b846-2783bb8d7841.
We found that ChatGPT has knowledge about the column names and types when prompted - the extend how much numeric
values of the data set retained could not be gauged by simple prompting. A detailed analysis of leakage is left for future
work.

Table 1: OpenML-CC18 datasets. ‘Domain’ is a manually added taxonomy. n represents the sample size of the dataset, and
p is the number of features in the dataset.

OpenML ID Name Domain n p

3 kr-vs-kp board game 3196 37
6 letter computer vision 20000 17

11 balance-scale psychology 625 5
12 mfeat-factors computer vision 2000 217
14 mfeat-fourier computer vision 2000 77
15 breast-w medicine 699 10
16 mfeat-karhunen computer vision 2000 65
18 mfeat-morphological computer vision 2000 7
22 mfeat-zernike computer vision 2000 48
23 cmc social sciences 1473 10
28 optdigits computer vision 5620 65
29 credit-approval business 690 16
31 credit-g economics 1000 21
32 pendigits computer vision 10992 17
37 diabetes medicine 768 9
38 sick medicine 3772 30
44 spambase natural language processing 4601 58
46 splice biology 3190 61
50 tic-tac-toe board game 958 10
54 vehicle computer vision 846 19

151 electricity engineering 45312 9
182 satimage computer vision 6430 37
188 eucalyptus environment 736 20
300 isolet natural language processing 7797 618
307 vowel natural language processing 990 13
458 analcatdata_authorship natural language processing 841 71
469 analcatdata_dmft medicine 797 5
554 mnist_784 computer vision 70000 785

1049 pc4 engineering 1458 38

Continued on next page

1https://pypi.org/project/MissForest
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Continued from previous page

OpenML ID Name Domain n p

1050 pc3 engineering 1563 38
1053 jm1 computer science 10885 22
1063 kc2 computer science 522 22
1067 kc1 computer science 2109 22
1068 pc1 engineering 1109 22
1461 bank-marketing business 45211 17
1462 banknote-authentication computer vision 1372 5
1464 blood-transfusion-service-center medicine 748 5
1468 cnae-9 natural language processing 1080 857
1475 first-order-theorem-proving computer science 6118 52
1478 har computer vision 10299 562
1480 ilpd medicine 583 11
1485 madelon computer science 2600 501
1486 nomao computer science 34465 119
1487 ozone-level-8hr environment 2534 73
1489 phoneme natural language processing 5404 6
1494 qsar-biodeg biology 1055 42
1497 wall-robot-navigation engineering 5456 25
1501 semeion computer vision 1593 257
1510 wdbc medicine 569 31
1590 adult social sciences 48842 15
4134 Bioresponse biology 3751 1777
4534 PhishingWebsites natural language processing 11055 31
4538 GesturePhaseSegmentationProcessed computer vision 9873 33
6332 cylinder-bands physics and chemistry 540 40

23381 dresses-sales business 500 13
23517 numerai28.6 economics 96320 22
40499 texture computer vision 5500 41
40668 connect-4 board game 67557 43
40670 dna biology 3186 181
40701 churn business 5000 21
40923 Devnagari-Script computer vision 92000 1025
40927 CIFAR_10 computer vision 60000 3073
40966 MiceProtein medicine 1080 82
40975 car business 1728 7
40978 Internet-Advertisements natural language processing 3279 1559
40979 mfeat-pixel computer vision 2000 241
40982 steel-plates-fault engineering 1941 28
40983 wilt environment 4839 6
40984 segment computer vision 2310 20
40994 climate-model-simulation-crashes environment 540 21
40996 Fashion-MNIST computer vision 70000 785
41027 jungle_chess_2pcs_raw_endgame_complete board game 44819 7

375 JapaneseVowels natural language processing 9961 15

G WEATHER FORECASTING

We measure the effective increase in observations, starting from zero samples, for a frequentist model to obtain better
mean squared error (MSE) than the prior predictive distribution elicited from the LLM. The effective sample size (ESS)
is the number of samples needed by the frequentist model to outperform the prior predictive model. In many cases, the
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prior predictive model is in conflict with the data and the so the ESS is equal to zero (or, strictly speaking, 2, as this is the
minimum number of samples with which one can compute an empirical standard deviation).
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